
Unsupervised Incremental Structure Learning of Stochastic And-Or
Grammars with Monte Carlo Tree Search

Luyao Yuan1, Jingyue Shen1, Zipeng Fu1, Song-Chun Zhu21

1Department of Computer Science, University of California, Los Angeles
2Department of Statistics, University of California, Los Angeles

{luyao@g.,brianshen@,fu-zipeng@engineering.,sczhu@stat.}ucla.edu

Abstract

Stochastic And-Or grammars form a com-
pact representation of probabilistic context-
free grammars. They explicitly model compo-
sitionality and reconfigurability in a hierarchi-
cal manner and can be utilized to understand
the underlying structures of different kinds of
data (e.g., language, image, or video). In
this paper, we proposed an unsupervised And-
Or grammar learning approach that iteratively
searches for better grammar structure and pa-
rameters to optimize the grammar compact-
ness and data likelihood. To handle the com-
plexity of grammar learning, we developed
an algorithm based on the Monte Carlo Tree
Search to effectively explore the search space.
Also, our method enables incremental gram-
mar learning. Experimental results show that
our approach significantly outperforms previ-
ous greedy-search-based approaches, and our
incremental learning results are comparable to
previous batch learning results.

1 Introduction

Stochastic grammar has been a fundamental
model in language comprehension and produc-
tion tasks for decades (Charniak, 1997; Chater and
Manning, 2006). In recent years, it has also been
successfully applied to other fields such as image
processing, object detection (Si and Zhu, 2013),
human activity understanding (Ivanov and Bobick,
2000; Pei et al., 2011), and robot control (Liu
et al., 2018). Given the great success of using
stochastic grammar to explicitly analyze the un-
derlying structure/process of various types of data,
however, automatic learning of stochastic gram-
mar remains a challenging problem.

Grammar learning, particularly learning its
structure (i.e., production rules), is an NP-hard
problem due to the innate ambiguity of grammar
and the tremendous cardinality of the grammar

space (Gold, 1978; Brabrand et al., 2007). To
tackle the complexity, previous approaches relied
on greedy/heuristic search (Stolcke and Omohun-
dro, 1994; Solan et al., 2005; Tu et al., 2013). In-
spired by this paradigm, we formulated learning
stochastic grammar as a search problem and em-
ployed a Bayesian probabilistic function to inte-
grate both structure and parameter learning into
a unified framework. Furthermore, we utilized
Monte Carlo Tree Search (MCTS) to effectively
explore the search space and avoid unpromising
local minima. Experimental results show that our
MCTS based method significantly outperforms
previous greedy methods.

Besides the improvement in batch learning, we
further enhanced our approach to enable incre-
mental learning. Contrast to batch learning, incre-
mental learning does not require the entire train-
ing dataset to be loaded but only a small por-
tion of data is used in each round of updating the
learned model. Although such incremental set-
ting has been well-adopted in Deep Learning (Le
et al., 2011), it is less studied in grammar learn-
ing and we believe it is important for leveraging
the memory-efficiency and model-transferability
of a grammar learning approach. Empirical re-
sults show that our incremental learning approach
can achieve comparable performance to previous
batch learning approaches.

The main contributions of this paper are: (i)
develops an MCTS based grammar learning ap-
proach that learns both the structure and param-
eters of a stochastic grammar unsupervisedly;
(ii) extends this approach to support incremental
learning and achieves comparable performance.

2 Related Work

Grammar learning is an NP-hard problem (Gold,
1978) that can trace back to finite-state automata

learning (Hill III, 1979). Stolcke and Omohundro
(1994) first introduced the idea of using heuristic
search to tackle grammar learning and proposed a
probability-based objective function to guide the
search. Afterward, different heuristic functions
were proposed and used with greedy/beam search
for unsupervised grammar learning on natural lan-
guage and other types of data (Solan et al., 2005;
Tu et al., 2013). The major limitation of these pre-
vious approaches is the restricted search scope in
the grammar space.

There were also research efforts in incremental
grammar learning, but they either required access
to both positive and negative examples (Nakamura
and Matsumoto, 2005; Nakamura and Imada,
2010), or only positive examples but restricted to
a simple-to-complex ordering (Javed et al., 2008).
Incremental parameter learning with fixed gram-
mar structure was also tackled by using online
EM algorithms (Liang and Klein, 2009; Latombe
et al., 2007). In contrast, our incremental grammar
learning approach learns both the grammar struc-
ture and parameters in an unsupervised unified
manner without any extra requirements of data.

3 Method

3.1 Stochastic And-Or Grammars

Stochastic And-Or grammars originate from
CFGs. A CFG is defined as a 4-tuple 〈Σ, N, S,R〉.
Σ is a set of terminal nodes representing atomic
patterns that are not decomposable, while N is a
set of non-terminal nodes representing decompos-
able patterns. S ∈ N is a special non-terminal
node named start symbol, representing the ori-
gin of the entire grammar. R is a set of gram-
mar rules in format A → BCD, where A ∈
N, {B,C,D} ⊆ Σ ∪N/{S}. An And-rule repre-
sents the decomposition of a pattern into a config-
uration of non-overlapping sub-patterns, while an
Or-rule represents an alternative configuration of
a composite pattern. Intuitively, if a non-terminal
node is the source of multiple rules, we call this
node an Or-node and these rules Or-rules.

Assigning probability distributions to Or-rules
of a CFG engenders stochastic CFGs, a gener-
alized version of CFGs. It is defined as a 5-
tuple, 〈Σ, N, S,R, P 〉, whose component P at-
taches probabilities to all Or-rules. Stochastic
And-Or grammars are generative models charac-
terized by P . Given a grammar, one can generate
valid data by recursively sampling from the start

symbol according to P .

3.2 Grammar Learning with MCTS
In both batch and incremental learning settings,
we search for the best grammar by iteratively op-
timizing an objective function, the posterior prob-
ability of the grammar given the training data:

P (G|X) ∝ P (G)P (X|G) (1)

=
1

Z
e−α||G||

∏
xi∈X

P (xi|G) (2)

where G is the grammar, X = {xi} is the set of
i.i.d. training samples, Z is the normalization fac-
tor of the prior, α is a constant, and ||G|| is the size
of the grammar. The prior prefers compact gram-
mars with smaller size, which we define as the sum
of sizes of all rules in a grammar. In the structure
learning process, we use Viterbi likelihood (the
probability of the best parse of the data sample xi)
to approximate P (xi|G) (Tu et al., 2013; Tu and
Honavar, 2012; Spitkovsky et al., 2010). In batch
learning, the full dataset X is available to the al-
gorithm all through, while in incremental learning,
we fix the size of the algorithm’s memory and re-
place old data with newer one after the memory
is full. Thus, P (G|X̂) is utilized to approximate
P (G|X), with ||X̂|| � ||X||.

Searching starts with a naive grammar G0 that
can generate X . The grammar tree of G0 has the
start symbol S as the root. S is an Or-node whose
children correspond to the data sequences in X .
We assign an And-node Ai for each xi ∈ X , and
Ai produces terminal symbols consisting xi. The
probability S that engenders Ai is uniformly ini-
tialized. G0 with a single Or-node overfits to X .
Our algorithm increases its prior by introducing
new nonterminal nodes into the grammar and sub-
stitute redundant structures in a bottom-up man-
ner.

At each search iteration, we substitute in
a grammar fragment called And-Or Fragment
(AOF) (Tu et al., 2013), which is rooted at a
new nonterminal node and contains a set of gram-
mar rules that specify how the new nonterminal
node generates one or more configurations of ex-
isting terminal or non-terminal nodes. An AOF is
a three-level grammar snippet rooted at an And-
node, with Or-nodes in the middle and previous
terminal/nonterminal nodes as leaves. We call the
combinations of the leaves as the configuration of
an AOF. Given a grammar G and an AOF A, we

a11 a12 a13 a21 a22 a23 a11 a22 a14
a11

a12
a21a22 a23

a22 a13 a14

0.5 0.3 0.8
0.2

0.2Or-Node

And-Node

Terminal Node

Figure 1: AOF Fragment and Its Substitution. The AOF has 4 configurations a12a13, a12a14, a22a13, and a22a14.

can get G′ by substituting A into G and replacing
all appearance of A’s configurations in the third-
level of G with the root of A. See figure 1 for an
example.

Substituting an AOF into a grammar changes
both the likelihood and the prior. First, a decrease
in likelihood is caused by the introduction of new
Or-nodes in the AOF. For a substitution, a con-
figuration is replaced by an AOF root. Instead of
generating the configuration directly without un-
certainty, the new grammar needs to sample this
configuration from the AOF stochastically. Hence,
the likelihood is reduced by the product of the cor-
responding Or-nodes’ probabilities. Meanwhile,
after substituting an AOF in, originally distinctive
data may now become identical, thus merging with
each other, which increases the weights of some
Or-branches coming out of the root. The likeli-
hoods for all affected data sequences are increased
by the ratio of the new weight to the old weight.
Besides likelihood, substitution of new AOF also
changes the grammar size. We can compute the
change of the objective function as the posterior
gain, which is the product of the likelihood and
prior gain. Along the search process, we keep
looking for the AOF with highest posterior gain
and substitute it into the current grammar. Details
for the likelihood gain can be found in Appendix
A.

We used MCTS to improve the greedy search
methods in (Tu et al., 2013). The root of the
MCTS search tree is the initial grammar, and to
transit from one grammar to another, we apply an
AOF substitution. For a given grammar, we find
a pool of AOFs that can raise its posterior and
sample one from this pool according to their pos-
terior gains. If for a grammar, no AOFs can be
found to increase its posterior gain, it is consid-
ered as a terminal grammar and we do backpropa-
gation to update the value for previous grammars
in the search tree. The reward used for backprop-
agation is the posterior difference between the ter-
minal grammar and the initial grammar. We use

different pool sizes for MCTS expansion step and
simulation step.

3.3 Incremental Learning
Several additional procedures need to be done
for the incremental learning setting. First, be-
fore every round of search, new data should be
merged into the existing grammar. Before merg-
ing, it must be parsed using current rules. Usu-
ally, the new data is not fully parsable, so we
amended the Earley parser (Hale, 2001) to recur-
sively check for parsable portions of a sequence
and return sub-parsings. Second, the parameters
of the stochastic And-Or grammar need to be up-
dated along the search. We took advantage of on-
line EM to optimize

∏
xi∈X P (xi,∆xi |G) with re-

spect to the production probabilities of grammar
G, where ∆xi is the set of all valid parse graphs
of xi (Nevado et al., 2000; Latombe et al., 2007).
Denote N(O → Oi, pgx) as the indicator function
that a parse graph pgx includes the rule O → Oi,
θ(O → Oi), η(O → Oi) as the production proba-
bility and the averaged count of parse graphs pass-
ing through the rule.

η(O → Oi) =∑
xi∈X

∑
pgxi∈∆xi

N(O → Oi, pgxi)P (x, pgxi |G)

P (xi,∆xi |G)

(3)

θ′(O → Oi) =
η(O → Oi)∑m
j=1 η(O → Oj)

(4)

The E-step (3) estimates sufficient statistics η, and
the M-step (4) updates production probabilities of
Or-rules. m is the total number of Or-children of
O. We do a stepwise update of the sufficient statis-
tics η as η = (1− rt)η+ rtη

′, where rt is a decay-
ing learning rate (Liang and Klein, 2009).

Finally, since the grammar keeps varying when
new data comes in, some structures learned by
the grammar may not be optimal and are up to
change as more data are seen. Therefore, we allow
learned AOFs to be deleted and recovered back to

Geoquery Robot
Solan et al. (2005) 0.437 0.554
Tu et al. (2013) 0.500 0.520
MCTS Batch 0.584 0.798
MCTS Incremental 0.437 0.589

Table 1: Best F-score for both dataset.

their configurations, so that further tweaking of the
grammar structures is possible. Pseudocode and
details for the complete algorithm can be found in
Appendix B.

4 Experiments

We evaluate our grammar learning approach on
two datasets. One is the Geoquery dataset (Wong,
2007) containing 880 unique natural language
descriptions of facts about the United States
geography. The other is a robot command
dataset (Dukes, 2013) with 2713 unique natural
language sentences of commanding a robot to do
various in-house tasks. In our experiment, We
randomly split a dataset into mutually exclusive
training and testing set. For the Geoquery, half
of the data is used for training and half for test-
ing. For the robot command dataset, around 1000
sentences are used for training and the remainder
for testing. We evaluate our approach under both
the batch setting and the incremental setting (the
model’s memory is fixed as 4% of the training data
size). We compare our approach with two previous
approaches (Solan et al., 2005; Tu et al., 2013),
which can only be applied to the batch learning.

We use a specific F1-score tailored for evalu-
ating grammars learned from unlabeled data. We
define the precision as the ratio of data generated
from the learned grammar that can be parsed by
the ground truth grammar, while the recall as the
ratio of unseen testing data that can be parsed by
the learned grammar. Since the ground truth gram-
mars are often unavailable, we utilize BiLingual
Evaluation Understudy (BLEU) score (Papineni
et al., 2002) as an approximation of the precision
metric, i.e., how close the sentences generated by
the learned grammar is to the sentences generated
by the true grammar. In our evaluation, we cal-
culate the average precision, recall, and F1-score
based on 10 rounds experiments with a random
split of the datasets. Details about the experiments
and hyperparameters can be found in Appendix E.

Table 1 summarizes the F1-scores of our ap-
proach applied under both batch (MCTS Batch)
and incremental (MCTS Incremental) settings

compared with the two previous approaches’ per-
formance under the batch setting. For both
datasets, our batch learning results show signifi-
cant improvement over the previous approaches,
and our grammars learned incrementally have
comparable performances as those learned by pre-
vious approaches in the batch learning setting.
Figure 2 shows the detailed Precision (BLEU)-
Recall curves of our approach and the two previ-
ous approaches in the batch learning setting. Fig-
ure 3 shows the F1-Score improvement w.r.t. the
number of training examples received under the
incremental learning setting. As shown by the fig-
ure, our approach can effectively learn more ac-
curate grammar model as more data has been pro-
cessed but not kept.

Recall: Geo Recall: Robo Cmd

Bl
eu

Figure 2: PR-Curves for Batch learning.

Figure 3: F-score increases as the model sees more data
in incremental learning, even with fixed memory size.

5 Conclusion

In this paper, we propose an algorithm that learns
the structure and parameters of stochastic And-
Or grammars in a unified framework and em-
ploys MCTS to address the complexity of gram-
mar learning. Our approach significantly improves
the state-of-the-art performance for unsupervised
batch learning, and supports incremental grammar
learning and achieves comparable performance.

References
Claus Brabrand, Robert Giegerich, and Anders Møller.

2007. Analyzing ambiguity of context-free gram-
mars. In International Conference on Implementa-
tion and Application of Automata, pages 214–225.
Springer.

Eugene Charniak. 1997. Statistical techniques for nat-
ural language parsing. AI magazine, 18(4):33.

Nick Chater and Christopher D Manning. 2006. Prob-
abilistic models of language processing and acquisi-
tion. Trends in cognitive sciences, 10(7):335–344.

Kais Dukes. 2013. Semantic annotation of robotic spa-
tial commands. In Language and Technology Con-
ference (LTC).

E Mark Gold. 1978. Complexity of automaton identi-
fication from given data. Information and control,
37(3):302–320.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1–8. Association for Computa-
tional Linguistics.

I Hill III. 1979. Introduction to automata theory, lan-
guages, and computation. Addison Wesley, Boston,
Ma.

Yuri A. Ivanov and Aaron F. Bobick. 2000. Recogni-
tion of visual activities and interactions by stochastic
parsing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):852–872.

Faizan Javed, Marjan Mernik, Barrett R Bryant, and
Alan Sprague. 2008. An unsupervised incremen-
tal learning algorithm for domain-specific language
development. Applied Artificial Intelligence, 22(7-
8):707–729.

Guillaume Latombe, Eric Granger, and Fred A Dilkes.
2007. Incremental learning of stochastic gram-
mars with graphical em in radar electronic support.
In Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on,
volume 2, pages II–301. IEEE.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik
Lahiri, Bobby Prochnow, and Andrew Y Ng. 2011.
On optimization methods for deep learning. In Pro-
ceedings of the 28th International Conference on In-
ternational Conference on Machine Learning, pages
265–272. Omnipress.

Percy Liang and Dan Klein. 2009. Online em for un-
supervised models. In Proceedings of human lan-
guage technologies: The 2009 annual conference of
the North American chapter of the association for
computational linguistics, pages 611–619. Associa-
tion for Computational Linguistics.

Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie,
Yixin Zhu, and Song-Chun Zhu. 2018. Interactive
robot knowledge patching using augmented reality.
In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1947–1954. IEEE.

Katsuhiko Nakamura and Keita Imada. 2010. Incre-
mental learning of cellular automata for parallel
recognition of formal languages. In International
Conference on Discovery Science, pages 117–131.
Springer.

Katsuhiko Nakamura and Masashi Matsumoto. 2005.
Incremental learning of context free grammars based
on bottom-up parsing and search. Pattern Recogni-
tion, 38(9):1384–1392.

Francisco Nevado, Joan-Andreu Sánchez, and José-
Miguel Benedı́. 2000. Combination of estimation
algorithms and grammatical inference techniques to
learn stochastic context-free grammars. In Interna-
tional Colloquium on Grammatical Inference, pages
196–206. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Mingtao Pei, Yunde Jia, and Song-Chun Zhu. 2011.
Parsing video events with goal inference and intent
prediction. In Computer vision (iccv), 2011 ieee in-
ternational conference on, pages 487–494. IEEE.

Zhangzhang Si and Song-Chun Zhu. 2013. Learning
and-or templates for object recognition and detec-
tion. IEEE transactions on pattern analysis and ma-
chine intelligence, 35(9):2189–2205.

Zach Solan, David Horn, Eytan Ruppin, and Shi-
mon Edelman. 2005. Unsupervised learning of
natural languages. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 102(33):11629–11634.

Valentin I Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D Manning. 2010. Viterbi training
improves unsupervised dependency parsing. In Pro-
ceedings of the Fourteenth Conference on Computa-
tional Natural Language Learning, pages 9–17. As-
sociation for Computational Linguistics.

Andreas Stolcke and Stephen Omohundro. 1994. In-
ducing probabilistic grammars by bayesian model
merging. In International Colloquium on Grammat-
ical Inference, pages 106–118. Springer.

Kewei Tu and Vasant Honavar. 2012. Unambiguity
regularization for unsupervised learning of proba-
bilistic grammars. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1324–1334. Association for
Computational Linguistics.

Kewei Tu, Maria Pavlovskaia, and Song Chun Zhu.
2013. Unsupervised structure learning of stochas-
tic and-or grammars. In Advances in Neural Infor-
mation Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-
8, 2013, Lake Tahoe, Nevada, United States., pages
1322–1330.

Yuk W Wong. 2007. Learning for semantic pars-
ing and natural language generation using statisti-
cal machine translation techniques. Technical re-
port, TEXAS UNIV AT AUSTIN DEPT OF COM-
PUTER SCIENCES.

http://papers.nips.cc/paper/5126-unsupervised-structure-learning-of-stochastic-and-or-grammars
http://papers.nips.cc/paper/5126-unsupervised-structure-learning-of-stochastic-and-or-grammars

Unsupervised Incremental Structure Learning of Stochastic And-Or
Grammars with Monte Carlo Tree Search (Appendix)

A Likelihood Gain

Substituting an AOF into a grammar changes the
likelihood in two folds. Denote the set of re-
placements being made on the training samples
R. First, a decrease in likelihood is caused by
the introduction of new Or-nodes in the AOF.
Suppose for reduction r ∈ R, a configuration
a1j1a2j2 ...amjm is replaced by an m-gram AOF
root A, where aiji is an existing terminal or non-
terminal node in the third-level of current grammar
that can be generated by the new Or-nodeOi in the
AOF. That is, instead of generating the configura-
tion directly without uncertainty, the new gram-
mar needs to generate A first and then samples
this configuration stochastically with a probabil-
ity P (A → a1j1a2j2 ...amjm) =

∏m
i=1 P (Oi →

aiji) =
∏m

i=1 θ(Oi → aiji), where θ(Oi → aiji)
represents the production probability of the gram-
mar rule Oi → aiji . Hence, the probability of
generating the data including r has been reduced
by a factor of

∏m
i=1 θ(Oi → aiji). Meanwhile,

after substituting an AOF in, some original dis-
tinctive data can become identical, thus merging
with each other. This merging will increase the
weights of some Or-branches coming out of the
root of the grammar. The likelihoods for all af-
fected data sequences are increased by the ratio
of the new weight to the old weight. To facili-

tate the computation of this factor, we construct a
context matrix CM where each row is a configu-
ration of existing nodes covered by the AOF, each
column is a context which is the surrounding pat-
terns of a configuration, and each element is the
number of times that the corresponding configura-
tion and context co-occur in the training set. See
figure 1 for a context matrix example. By com-
bining these two factors together, we can calculate
the total likelihood change of introducing an AOF,
defining as likelihood gain:

P (X|Gt+1)

P (X|Gt)
=

∏n
i=1

∏mi
j=1 ||Ri(aij)||||Ri(aij)||

||R||n||R||

×
∏

c(
∑

eCM [e, c])
∑

e CM [e,c]∏
e,cCM [e, c]CM [e,c]

where Gt and Gt+1 are the grammars before and
after learning from the AOF, Ri(aij) denotes the
subset of replacement in R in which the i-th node
of the configuration being reduced is aij , e in the
summation or product ranges over all the configu-
rations covered by the And-Or fragment, and c in
the product ranges over all the contexts that appear
in CM . Refer to (Tu et al.) for detailed proof. An
intuition is that the first fraction corresponds to the
decreasing factor of the likelihood. For every Or-
branch, the attached weight is the empirical ratio

a12 a22 a13 a14

Context1 Context2 …… Contextn

a12 a13
2 0 …… 3

a12 a14
1 2 …… 1

a22 a13
3 4 …… 0

a22 a14
2 3 …… 1

Config
Context

Figure 1: Reduction and Context Matrix

of selecting aij for the i−th node in all configu-
rations, which is ||Ri(aij)||

||R|| . Multiplying over all
reductions gives us the first fraction. After sub-
stitution, all data in the same column become one
single new data, whose weight connecting with the
root Or-node increases by a factor of

∑
e CM [e,c]
CM [e,c] .

Again, multiplying over all reductions gives the
second fraction.

B The Complete Algorithm

Pseudocode for both batch and incremental learn-
ing is showed in algorithm 1 - 3. One more de-
tail is how to generate AOFs given current mem-
ory. We first generate a bi-gram AOF f by ran-
domly sample two bi-grams from the memory and
form an AOF out of them. Remember, the mem-
ory is always consistent with the third-level ter-
minal/nonterminal nodes in the grammar. Then,
on the basis of f , we optimize its posterior gain
using greedy or beam search via adding/removing
its Or-nodes and adding/removing its leaf nodes.
As long as no operations can increase the poste-
rior gain of f , we put f into the pool. To complete
this pool, we repeat the above procedure K times,
where K is a hyperparameter. For expansion steps
in MCTS, we use K = 20 and 5 for simulation
steps. Finally, we remove duplicates in the pool
and sample one AOF from this pool based on their
posterior gains.

C Partial Parser

We revised Earley parser (Hale, 2001) to enable
partial parsing. For a given input data sequence,
our partial parser starts from the first position of
the data sequence, trying to parse using all rules in
current grammar with the Earley parser and record
all possible parsing that can form a full parse tree
from this given position. The immediate position
that cannot be parsed is returned. If no full parse
tree can be formed given the current set of rules,
we recursively delete the top level rules and obtain
the subtrees of current grammar trees, until there
is a grammar tree that can parse the sequence or
until there is no rule left. Then we resume at the
unparsed position we record previously and recur-
sively parse the rest of the sequence. During the
process, all possible parsing patterns are recorded
and we select the one with the highest probabilities
as the final partial parsing. Lastly, we concatenate
the parsed and unparsed segments of the sequence

to regenerate the data and merge it with the current
stochastic grammar tree.

D Deletion of AOFs

Unlike batch learning, data in incremental learning
varies during the learning process. As a result, pre-
viously learned structures may become obsolete or
sub-optimal as more data are seen and the gram-
mar has not yet been stable. To prevent our algo-
rithm being trapped in sub-optimal, we randomly
select among AOFs whose roots are in the third
level of the grammar and decompose them back
to their configurations, giving MCTS a chance
to consider other possible arrangements of these
symbols. We define a delete probability. When
MCTS is doing expansions or simulations, it either
tries to generate a new AOF or randomly delete
an AOF following the delete probability. After an
AOF been decomposed, both the grammar and the
data memory need to be updated by inserting the
configurations back to the position held by the root
of the AOF. One thing to be noticed is that, even in
the batch learning setting, deletion of AOFs can be
included with much lower delete probability than
that of incremental learning.

E Experiment Details

Here in table 1 and 2 we present some example
sentences from the dataset together with sentences
generated by our stochastic grammar.

In our experiments, we used several hyper-
parameters to guide the learning process. We
chose α = 2.94 for robotic commands dataset,
and α = 2.2 for Geoquery dataset, where α
controls the balance between prior and likelihood
as in formula (1) section 4.1. We set the deletion
probability to be 0.2 for incremental learning of
robotic command dataset, and 0.1 for incremental
learning of Geoquery dataset. To prevent over-
fitting, we also restrict the simulation depth for
MCTS. For batch learning, MCTS simulation
is forced to stop after 20 steps for the robotic
command dataset and 60 steps for the Geoyquery
dataset. For incremental learning, we limit the
simulation to be 10 for both datasets.

Give me the cities in virginia .
What are the high points of states surrounding mississippi ?

Count the states which have elevations lower than what alabama has .
Name the major cities in florida . [batch]

Which rivers do not flow through indiana? [incremental]
What state borders the least states excluding colorado and excluding dakota ? [incremental]

Table 1: Geoquery dataset, the top is the original data and the bottom is generated sentences.

Place green pyramid on top of red brick
Move the yellow tetrahedron on top of the red blocks in the corner nearest to the yellow tetrahedron

Pick the red pyramid which is on top of yellow brick and place it above the yellow block
Pick up the blue pyramid placed closest the green pyramid on the green pyramid [batch]

Place the red prism on top of the yellow cube [incremental]
Move the red pyramid in the white cube [incremental]

Table 2: Robot command dataset, the top is the original data and the bottom is generated sentences.

Input: Initial Grammar G0, Dataset X ,
Computation Resource res

Output: Stochastic CFG G
Gs = {}
while res > 0 do

G1 = UCT-Select(G0) . G1 is a
existing grammar in the MCTS search
tree
G2 = Expand(G1, X) . sample an

AOF from G1, X with large sample
size and substitute in

while G2 is not a terminal grammar do
G2 = Simulate(G2, X) . sample an

AOF from G2, X with small
sample size and substitute in

end
Gs← Gs ∪ {G2}
res← res− 1

end
return argmaxG∈Gs Posterior(G)

Algorithm 1: MCTS searching process. Hy-
perparameters are omitted in this pseudocode.
As described in section B, the only difference
between expansion and simulation is the size
of the AOF pool. Expansion steps have a larger
pool size, correspondingly, take longer to run.
A grammar will be considered as a terminal
grammar if no AOF can be found to raise its
posterior.

Input: Dataset X , Computation Resource
res

Output: Stochastic CFG G
G0 ← initial grammar from X
G←MCTS(G0, X , res)
return G
Algorithm 2: Batch learning algorithm.

References
John Hale. 2001. A probabilistic earley parser as a psy-

cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1–8. Association for Computa-
tional Linguistics.

Percy Liang and Dan Klein. 2009. Online em for un-
supervised models. In Proceedings of human lan-
guage technologies: The 2009 annual conference of
the North American chapter of the association for
computational linguistics, pages 611–619. Associa-
tion for Computational Linguistics.

Kewei Tu, Maria Pavlovskaia, and Song-Chun Zhu.
Unsupervised structure learning of stochastic and-or
grammars (supplementary material).

Input: Data Stream S, Computation
Resource res

Output: Stochastic CFG G
t← 0
while Data stream not finish do

d ∼ S . incoming data d from data
stream
G, d′ ← PartialParse(G, d) . partial

parse d and merge it into G
X̂ ← UpdateMemory(X̂, d′) .

update memory by replacing old data
with new data d′

G←MCTS(G, X̂, res)
η′ ← E-Step(G, X̂). re-estimate
sufficient statistics
G.η ← (1− rt)G.η + rtη

′ . stepwise
update Or-branches’ counts towards
new counts
G←M-Step(G) . calculate

Or-branches’ weights with current
counts
t← t+ 1
res→ res− 1

end
return G

Algorithm 3: Incremental learning algorithm.
The E-Step and M-Step are implemented ac-
cording to formula (3) and (4) in section 4.2.
After the sufficient statistics of current mem-
ory is acquired, we use them to update the suf-
ficient statistics of the grammar by intercept-
ing them with previous suffcient statistics by
a factor of rt. We follow the statement from
stochastic approximation literature by ensur-
ing

∑∞
t=0 rt = ∞,

∑∞
t=0 r

2
t = 0 (Liang and

Klein, 2009).

	NAACL2019_Preprint
	NAACL

