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Abstract: Since the debut of Deep Q-Network (DQN), numerous researches have been conducted to integrate Deep
Neural Networks (DNN) with Reinforcement Learning (RL). The tremendous expressive power of DNNs
empowers Reinforcement Learning, which was mostly only functional in simple discrete / tabular settings,
to solve complex problems in continuous and high-dimensional settings. Recently, Deep RL is adapted to
Multi-Agent Systems (MAS). In many real-world scenarios, a group of agents, each with generally different
local observations, needs to cooperate to achieve a collective reward. Despite decentralized execution, global
state information can be shared among agents in a laboratory setting during the rehearsal period. We pro-
pose double QMIX, an end-to-end multi-agent Q-learning method with reduction of value overestimation, that
trains decentralized agents’ policies in a centralized setting. The centralized Q-value is computed from each
agent’s utility in a non-linear and anti-overestimated fashion. We provide the theoretical analysis of the reason
why traditional DQN training methods lead to significant value overestimation in multi-agent setting, and how
double QMIX solves this problem is explained. We also evaluate double QMIX in StarCraft II micromanage-
ment environment to show a better performance, compared with other state-of-the-art value-based multi-agent
reinforcement learning methods.

1 INTRODUCTION

Reinforcement learning (RL) is the study of how to
learn an (nearly) optimal policy given observed re-
wards in an environment (Russell and Norvig, 2016).
Used to be largely restricted in environments with
small-scale discrete spaces (Kaelbling et al., 1996;
Tesauro, 1994; Singh and Bertsekas, 1997; Matarić,
1997), RL, paired with Deep Neural Networks as
non-linear function approximators, levels up and is
capable of solving problems with high-dimensional
discrete or continuous state and action spaces (Mnih
et al., 2015; Mnih et al., 2016; Levine et al., 2016; Li
et al., 2016).

Recently, Deep Multi-Agent Reinforcement
Learning (Deep MARL) emerges as a promising way
to address complicated coordination problems, in
which more than one autonomous agent is involved
(Jaderberg et al., 2019; OpenAI, 2018).

a https://orcid.org/0000-0002-7462-7215

In many such multi-agent coordination problems,
the framework of centralized training and decen-
tralized execution (CTDE) is commonly applicable
(Oliehoek et al., 2016; Kraemer and Banerjee, 2016).
Agents act in an environment separately, and each
agent is only able to perceive its partial observation of
the environment (eg. it may not observe where other
agents are and what other agents can observe). The
decentralized policies condition on ones’ own obser-
vations, so there is no requirement of communicating
with other agents to construct an aggregate observa-
tion. During training, agents can learn their decen-
tralized policies in a simulated setting with full state
information supplied and inter-agent communication
bandwidth constraints removed.

This paradigm significantly alleviates the prob-
lem of exponential grow in observation and action
space with the number of agents when the central-
ize execution is used. Additionally, unlike central-
ized execution methods, the problem of ’lazy agent’
(Hausknecht, 2016) can be avoided.



Most of the state-of-the-art methods for CTDE
include a centralized action-value function (Q-value
function) as an indispensable module for centralized
training. One approach is the extension of the single-
agent RL method, policy gradient (Williams, 1992),
and its variant for variance reduction, Actor-Critic
(Sutton et al., 2000; Konda and Tsitsiklis, 2000).
COMA (Foerster et al., 2018) and MADDPG (Lowe
et al., 2017) are two notable examples, where the
centralized critic(s) with all related information about
state guides the learning process of decentralized poli-
cies of all agents.

Another approach is to equip multi-agent Q-
learning with extra state information during training.
VDN (Sunehag et al., 2018) and QMIX (Rashid et al.,
2018) implement such idea by mixing individual util-
ity values to obtain the centralized action value QMIX.
QTRAN (Son et al., 2019) extends the representation
power of the network mixing individual utilities; nev-
ertheless, QTRAN fails to utilize the full state infor-
mation when it’s available. This shortcoming makes it
unsuitable for problems where the union of all agents’
observation contains much less information than the
full state. Our test bench, StarCraft II micromanage-
ment (Samvelyan et al., 2019), is one of the examples.

Despite the superb performance of QMIX and
VDN in complex multi-agent coordination tasks, it
is well-known that the vanilla Q-learning methods
(Watkins and Dayan, 1992; Mnih et al., 2015) yield
overestimation of learned action values in both tab-
ular settings (Thrun and Schwartz, 1993; Hasselt,
2010) and complex cases where generalized function
approximators are used (Van Hasselt et al., 2016).
Thrun and Schwartz give illustrative examples show-
ing overestimations result in sub-optimal policies in
single-agent tabular settings. Van Hasselt et al. pro-
vide a comprehensive study of overestimations in
single-agent DQN (Mnih et al., 2015) and experimen-
tally show the overestimations lead to sub-optimality.
In Atari 2600 games, provided by Arcade Learning
Environment (Bellemare et al., 2013), DQN is outper-
formed by double DQN, which significantly reduces
overestimations by decorrelating greedy action selec-
tion and target action value evaluation.

In this work, we formally prove that overestima-
tions exist in multi-agent value mixing Q-learning un-
der certain conditions. We show that the idea pre-
sented in double DQN can be generalized to multi-
agent settings. We present the adapted method,
double QMIX, and illustrate its performance gains
against other value mixing methods in StarCraft II mi-
cromanagement tasks.

Table 1: multi-agent coordination setting.

Notation Description Formulation
S state space s ∈ S
A agent indices a ∈ A , {1, ...,n}
U agent action space ua ∈U
U joint action space u ∈ U ,Un

P transition function P(st+1|st ,u) :
S×U→ ∆S

r shared reward r(s,u) :
function S×U→ R

Z observation space z ∈ Z
O observation function zt = O(st ,a)
γ discounted factor γ ∈ (0,1]
τa agent observation- τa ∈ T

action history T , (Z×U)∗

τ joint observation- τ = (τ1, ...,τn)

action history τ ∈ T , T n

πa agent decentralized πa(ua|τa) :
policy T → ∆U

Rt discounted return Rt = ∑
∞
i=0 γirt+i

Qπ joint action-value Qπ(st ,ut) =
function Eπ,P[Rt |st ,ut]

Q∗ optimal Q maxπ Qπ

π∗ optimal π argmaxπ Qπ

θ∗ parameters of π∗

2 BACKGROUND & RELATED
WORKS

A multi-agent coordination setting can be modelled
by a Dec-POMDP (Oliehoek, 2012), which is a tu-
ple G = 〈S,A,U,P,r,Z,O,n,γ〉. Each agent has a dif-
ferent partial observation zt about the current state st
after action ut−1 is chosen and a transition in the en-
vironment from previous state st−1 leads to the cur-
rent state. Every agent’s policy conditions on its own
observation-action history. This decentralized policy
is used during decentralized execution, but the train-
ing is centralized. To realize the CTDE idea, the
learning algorithm of double QMIX has access to s
and all individual observation action trajectories τa.

Each agent’s goal is to maximize its own dis-
counted return by selecting actions based on its policy
and observation-action history. To enforce the coop-
eration between agents, a shared reward function is
used. Detailed notations and formulations refer to Ta-
ble 1.

2.1 Deep Q-Learning

Q-learning (Watkins and Dayan, 1992) is a form of
off-policy temporal difference learning (TD Learn-



ing) (Sutton, 1988). Through boostrapping with ex-
ternal reward feedback from the environment, Q-
learning intends to learn a optimal action value for
every state-action pair. The expressive power of deep
neural network (Raghu et al., 2017) makes it a suit-
able model for action value approximator. Deep
Q-Network (Mnih et al., 2015), with parameters θ,
is proposed to scale Q-learning to high-dimensional
state and action space. Two important changes are
made in the learning algorithm of deep Q-learning.
Uniform sampling from the experience replay (Lin,
1992) reduces the correlation of experiences in a
mini-batch, so stochastic gradient descent (SGD) op-
timizers can work properly. In addition to the online
network constantly updating parameters, a target net-
work, with parameters θ− is used for stable training.
The parameters of a target network are periodically
copied from θ. The target value is

yDQN
t = rt + γmax

ut+1
Q(st+1,ut+1;θ

−). (1)

L(θ) = E
[
(yDQN

t −Q(st ,ut ;θ))2
]

(2)

is the loss function to minimize.

2.2 Double Deep Q-Learning

Double deep Q-learning (Van Hasselt et al., 2016)
addresses the overestimation problem in target value
yDQN in Equation 1. Double DQN uses the online
network (θ) to evaluate the greedy policy (the max
operator to select the best action for next time step in
Equation 1), but target network (θ−) is used for com-
puting the selected action’s Q-value. Formally, the
target value is

yDoubleDQN
t = rt+1+

γQ(st+1,argmax
ut+1

Q(st+1,ut+1;θ);θ
−).

(3)
The update process of parameters in the target net-
work stays unchanged.

2.3 Deep Recurrent Q-Learning

DQN and double DQN are formulated in the fully ob-
servable Markov decision process (MDP). In partially
observable settings, estimating action value solely
based on current observation can be arbitrarily inef-
fective due to Q(ot ,at) 6= Q(st ,at). Deep recurrent Q-
network (DRQN) (Hausknecht and Stone, 2015) uses
recurrent neural networks (eg. LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Chung et al., 2015)) to
model recurrency in observation-action history. Ex-
periments show that this formulation provides a better
estimation of underlying (latent) state.

2.4 Value Mixing (Vanilla QMIX
Methods)

Unlike independent Q-learning (Tan, 1993), which
decomposes multi-agent Q-learning into a collec-
tion of simultaneous single-agent Q-learning, value
mixing methods aim to learn a joint action-value
QMIX(τ,u) within linear complexity regarding the
number of agents n. This approach is also different
from joint action learners (JAL) (Claus and Boutilier,
1998), where a centralized agent control actions of all
agents. This results in intractability of action space
and observation space with exponential size in the
number of agents n.

Since agents need to act in decentralized fash-
ion after training, it is reasonable for QMIX to condi-
tion on each agent’s action value function, on which
greedy policy in decentralized execution is based.

QMIX(τ,u) = f


Q1(τ

1,u1;θ1)
...

Qn(τ
n,un;θn)

 ;θ
MIX

 , (4)

where f is the mixing function, and Qa denotes a util-
ity function (Guestrin et al., 2002). Qa is not ac-
tion value function because it does not estimate an
expected discounted return Rt . Instead, QMIX mod-
els Rt . However, suitable f and Q-learning algorithm
will promote Qa to be properly scaled expected dis-
counted return. For notation simplicity, we refer both
QMIX and Qa as action value functions.

2.4.1 Value Decomposition Networks

The value decomposition network (VDN) (Sunehag
et al., 2018) represents f in Equation 4 as a un-
weighted arithmetic mean function:

QVDN
MIX (τ,u) =

n

∑
a=1

Qa(τ
a,ua;θ

a). (5)

Then θMIX are fixed constants. Qa is modelled by a
recurrent neural network, analogous to DRQN. The
loss function is equivalent to Equation 2, in which
{θa}a=1,...,n is trained. The 2nd term of target value
of QVDN

MIX (analogous to Equation 1) can simply be
the summation of every maxQa, which means linear
computation complexity in n.

In this structure, the centralized training setting is
required for the simultaneous update of θa for every
agent a. Nevertheless, neither constant θMIX are flex-
ible representations for the mixing function f , nor
available state information in training environment
that is not present in any agent’s observation (eg. the
HP values of opponents) is efficiently used.



2.4.2 Monotonic Value Function Factorisation

The monotonic value function factorisation (mono
QMIX) (Rashid et al., 2018) addresses the aforemen-
tioned problems of VDN by modeling f with a special
neural network. A monotonic relationship is ensured:

∀a ∈ A,
∂QMONO

MIX
∂Qa

≥ ga, and ga ≥ 0, (6)

so

max
u

QMONO
MIX (τ,u;Θ) =

fNN


maxu1 Q1(τ

1,u1;θ1)
...

maxun Qn(τ
n,un;θn)

 ;θ
MIX

 .
(7)

As a result, the maximization of QMONO
MIX can be com-

puted in linear time in the number of agents n.
The replay buffer and target network are used. The

target value function and loss function are similar to
Equation 1 and 2:

yMIX
t = rt + γmax

ut+1
QMONO

MIX (τt+1,ut+1;Θ
−), (8)

L(Θ) = E
[
(yMIX

t −QMONO
MIX (τt ,ut ;Θ))2

]
, (9)

where

max
ut+1

QMONO
MIX (τt+1,ut+1;Θ

−) =

fNN


maxu1

t+1
Q1(τ

1
t+1,u

1
t+1;θ1−)

...
maxun

t+1
Qn(τ

n
t+1,u

n
t+1;θn−)

 ;θ
MIX−

 .

(10)

The mixing network fNN is a feed-forward net-
work that takes Qa as inputs and outputs QMIX. The
monotonicity constraints in Equation 6 is satisfied
by restricting all weights in θMIX to be non-negative
through linearly rectification (ReLU). Biases have no
such constraint. θMIX are outputs of a set of hypernet-
works (Ha et al., 2017), each of which takes state s as
the input.

3 OVERESTIMATION IN
MULTI-AGENT VALUE
MIXING Q-LEARNING

In single-agent setting, if the estimated action val-
ues contain independent noise uniformly distributed

in [−ε,ε], then we have the expected overestimation
of target value (Thrun and Schwartz, 1993) 1

E[Z], E[yt − y∗t ], (11)

0≤ E[Z]≤ γ
m−1
m+1

, (12)

where m is the size of action space |A|, and y∗ is the
true optimal target value, satisfying the Bellman con-
dition (Bellman, 1966):

y∗t , Q∗(st ,ut ;θ
∗) = rt + γmax

ut+1
Q∗(st+1,ut+1;θ

∗).

(13)
In this section, we show that the overestimation of

target action value also exists in value mixing meth-
ods for partially observable multi-agent Q-learning,
regardless of the source of errors.

Theorem 1. Assume for each agent Q∗a(τ
a,u) =

V ∗a (τ
a) and the errors of estimated action values

form an independent uniform distribution in range
[−ε,ε]. Then the expected overestimation is at least
γ g ε n m−1

m+1 under linear condition on f , where g is
the lowest bounding gradient for ga.

Proof of Theorem 1. We first define the expected
overestimation:

E[Z], E[yMIX
t − yMIX∗

t ]

= E


rt + γ f


maxu1

t+1
Q1(τ

1
t+1,u

1
t+1)

...
maxun

t+1
Qn(τ

n
t+1,u

n
t+1)





−

rt + γ f


V ∗1 (τ

1
t+1)

...
V ∗n (τ

n
t+1)






(14)

Define the normally distributed noise as a random
variable Y s,u

a conditioning on states, actions and agent
indices:

Y τ,u
a , Qa(τ,u)−Q∗a(τ,u)

= Qa(τ,u)−V ∗a (τ).
(15)

So the probability density of the error is

PY τ,u
a
(y) =

{
1
2ε
, if y ∈ [−ε,ε]

0, otherwise.
(16)

In theory, weights in f can be arbitrarily large. Here
we assume that f is a linear model: ∂QMIX

∂Qa
= ga. De-

note the lower bound gradient mina ga as g, where

1As some readers may notice, we do not differentiate
random variables, samples, and sometimes function of the
same subject by separate symbols (eg. reward r), due to oth-
erwise too many symbols to keep track. This is a common
convention in RL literature.



g ≥ 0. For VDN, g = 1. Continuing from Equation
14, we get:

E[Z] = γ E

[
∑
a∈A

ga

(
max
ua

t+1

Qa(τ
a
t+1,u

a
t+1)−V ∗a (τ

a
t+1)

)]
(17)

≥ γ g ∑
a∈A

E
[
max

u
Y τ,u

a

]
. (18)

Equation 17 and 18 are based on the linearity of
expectation. Notice that errors Y τ,u

a are not necessar-
ily independent for different agent a. Since Y τ,u

a are
independent for different u,

P(max
u

Y τ,u
a ≤ y) = P(Y τ,1

a ≤ y ∧ ... ∧ Y τ,m
a ≤ y)

(19)

=
m

∏
u=1

P(Y τ,u
a ≤ y) (20)

By calculating cumulative distribution function
(CDF) from Equation 16,

P(max
u

Y τ,u
a ≤ y) =


0, if y≤−ε(

ε+y
2ε

)m
, if y ∈ (−ε,ε]

1, otherwise.
(21)

Differentiate the both sides of Equation 21. We get
the probability density function

Pmaxu Y τ,u
a
(y) =

{
m
2ε

( 1
2 +

y
2ε

)m−1
, if y ∈ [−ε,ε]

0, otherwise.
(22)

This yields the expected overestimation of each agent,

E
[
max

u
Y τ,u

a

]
=

∫
ε

−ε

y
m
2ε

(
1
2
+

y
2ε

)m−1

dy (23)

= ε
m−1
m+1

. (24)

Hence, from Equation 18 and 24,

E[Z]≥ γ g ε n
m−1
m+1

. (25)

4 DOUBLE QMIX

Inspired by double DQN, we proposed a simple
change to the target value to reduce the overestima-
tion. Specifically,

yMIX
t = rt + γ QMIX(τt+1,u

′
t+1;Θ

−), (26)

where

u
′
t+1 = argmax

ut+1

QMIX(τt+1,ut+1;Θ). (27)

For mixing functions with monotonic constraints,

u
′
t+1 =


argmaxu1

t+1
Q1(τ

1
t+1,u

1
t+1;θ1)

...
argmaxun

t+1
Qn(τ

n
t+1,u

n
t+1;θn)

 . (28)

Compared with Equation 8, Equation 26 decomposes
the greedy action selector (the max operator) into 2
parts. Double QMIX selects the next time step action
based on the online network (Θ), but the evaluation of
action values uses the target network (Θ−). The selec-
tion and evaluation and action values are decorrelated
due to the general discrepancy in parameters between
online network and target network. This approach
prevents the target values from being always evalu-
ated based the largest next-step action value given an
agent’s observation-action trajectory.

Double QMIX requires no additional network
structures or parameters, and the training pipeline, in-
cluding uniform sampling from replay buffer, back-
propagtion to reduce sampled TD-errors and periodic
updates of target network’s parameters, is unchanged.
In addition, the training time complexity and space
complexity are equivalent to those of QMIX methods
using the vanilla target values.

Since immediately after each copying of the pa-
rameters of online network to the target network, both
networks are essentially identical, the decorrelation
effect is elusive during that period. A common ap-
proach is reducing the update frequency (Van Hasselt
et al., 2016).

5 EXPERIMENTS

We conduct two experiments: one for visualizing the
overestimation in vanilla QMIX and the effectiveness
of double QMIX in reducing the overestimation of
target values, and the other focusing on the perfor-
mance gain of using double QMIX, compared with
vanilla QMIX methods, in StarCraft II micromanage-
ment tasks (Samvelyan et al., 2019; Vinyals et al.,
2017).

5.1 Overestimation Visualization

We plot two heatmaps within the same scale respec-
tively for vanilla QMIX and double QMIX in Fig-
ure 1. We made the same assumption as in Sec-
tion 3. Namely, Q∗a(τ

a,u) = V ∗a (τ
a), and the errors

of estimated action values form an independent uni-
form distribution in range [−ε,ε]. We assume linear
model f and ga are all 1, so f is a VDN structure.
Also due to the monotonicity constraint on QMIX,



Figure 1: Heatmaps of action value overestimation in vanilla QMIX and double QMIX. The vanilla QMIX method results in
large overestimation in settings with many agents or large action space, whereas double QMIX manages to decorrelate the
action selection and action value evaluation, so the overestimation of action value is constantly low (< 0.128) regardless of
the number of agents or actions.

Q∗MIX = V ∗MIX = ∑a V ∗a , and QMIX = ∑a Qa. Hence,
the values that heatmaps visualize are averaged sam-
ple estimations of E[Z] without the γ factor in differ-
ent settings (given number of agents, number of ac-
tions, and methods). In double QMIX, the online net-
work and the target network Θ− are two independent
networks.

We sample Va(τ
a) uniformly from a wide range

[−100,100] to better simulate read-world scenarios
where optimal action values are in a large range. For
each setting, we generate 1000 random pairs of esti-
mate action values and optimal action values. We set
ε to be only 1, so the estimated action is in the close
proximity of the optimal action value.

Despite accurate estimated action values for indi-
vidual agents, vanilla QMIX shows a significant in-
crease in the overestimation along an increase in the
number of actions or in the number of agents or in
both, whereas double QMIX manages to keep the
overestimation constantly below 0.128.

The heatmap of vanilla QMIX also indicates that
the number of agents n has a larger correlation with
the overestimation than the number of actions m. This
partially reflects the lower bound shown in Equation
25.

5.2 StarCraft II Micromanagement

We have shown that double QMIX method can reduce
the overestimation of action target value. However,
the proof in Section 4 and the visualization in 5.1 are
based on the assumption of constant optimal agent
action value for a given trajectory and the mixing
function being linear. In a general multi-agent con-

trol problem and QMIX with monotonic value func-
tion factorisation (Section 2.4.2), these conditions no
longer hold. Also, the increase in performance result-
ing from the reduction of overestimation is not shown.

In this section, we deploy the double QMIX
method in StarCraft II Micromanagement. We show
that double QMIX performs constantly better that
mono QMIX (ie. monotonic value function factori-
sation) in 3 complex settings with 5, 8, 9 agents re-
spectively. The results of VDN method in StarCraft II
micromanagement tasks are constantly outperformed
by mono QMIX (Rashid et al., 2018), so we do not
plot the results of VDN.

5.2.1 Experimental Setup

In order to have a fair comparison with mono QMIX,
we use the identical StarCraft II micromanagement
setup and the same network structure as in (Rashid
et al., 2018). We state the games’ setup in next para-
graph, but refer readers to (Rashid et al., 2018) to find
the detailed network structure.

Each game consists of 2 identical teams in com-
petition. The first team is controlled by RL algo-
rithms, and the second team is controlled by StarCraft
II AI heuristics with difficulty set to medium. We
test over 3 complex settings: 2 Stalkers and 3 Zealots
(2s3z: 5 agents to control), 3 Stalkers and 5 Zealots
(3s5z: 8 agents to control), and 1 Colossus, 3 Stalk-
ers and 5 Zealots (1c3s5z: 9 agents to control). The
action space of agents consists of move[direction],
stop, attack[enemy id], and noop. NORTH, EAST,
SOUTH, and WEST are the four directions allowed to
move. Each agent has a sight range: only informa-
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Figure 2: The blue curve is for double QMIX, and the orange curve is for mono QMIX. 3 plots are for the settings of 2 Stalkers
3 Zealots, 3 Stalkers and 5 Zealots, and 1 Colussus 3 Stalkers 5 Zealots (from left to right order). The bold lines are the mean
test winning rates, and the shaded regions cover 90% of confidence levels.

tion of agents (allies or enemies) within the range can
be observed, forming a partial observation of the bat-
tleground. The attack-move and auto-fire within sight
range options are disabled. For agents within the sight
range, their distance, relative x, relative y,
and unit type are provided as an observation vector
zt . The global state information, available to the mix-
ing network, is a feature vector consisting of the union
set of all observations to different agents, health,
shield points, and cooldown time of all agents.
Stalkers, Zealots and Colossi have 80, 100, 200 hit
points respectively. They also have 80, 50, and 150
shield points respectively. All agents have the same
sight range of 9 and the same shooting range of 6.
At each time step, all agents receive a shared reward,
equivalent to the total damage on all enemies. Addi-
tionally, 10 points given for killing an enemy, and 200
points for killing all. The maximal rewards achiev-
able in an episode is normalized to 20. The maximal
length of an episode is 200. If there are enemies alive,
we treat it as a failure.

All but one hyper-parameters we used for dou-
ble QMIX are the same as stated in (Rashid et al.,
2018), which is tuned for mono QMIX. These hyper-
parameters are comprised of ε in ε-greedy agent ac-
tion selection linearly decaying from 1.00 to 0.05 over
50 thousand time steps and then keeping constant,
γ = 0.99, 5000 episodes of replay buffer size, training
mini-batch size of 32, and learning rate for RMSprop
(Hinton et al., ) setting to 5×10−4. We set the target
network update period, the only hyper-parameter we
optimize, to 1000 training episodes, as it is noticed
that longer update period has a better decorrelation
effect during computing the computed target action
(Van Hasselt et al., 2016).

5.2.2 Results

The plots of test winning rates (using greedy action
selection) against the training episodes in 3 settings

are shown in Figure 2. The test winning rates are ob-
tained every 2000 training episodes by greedy sam-
pling 20 independent episodes. We average the test
winning rates across 4 runs for each settings.

In all 3 settings, even though all but one hyper-
parameters are not tuned for double QMIX, it shows
its advantages over mono QMIX, in terms of the
means and the variances of test winning rates. Com-
pare 2s3z and 3s5z settings. The number of agents
that are needed to control increases from 5 to 8,
though the types of agents in the group is not changed:
Stalkers and Zealots. Double QMIX displays a larger
performance gain when the number of agents in-
creases. Compare 3s5z and 1c3s5z settings. Although
there is only 1 more agent in team in 1c3s5z setting,
the mean test winning rates sharply decrease when us-
ing mono QMIX. The addition of 1 more agent type
(Colossus), whose hit point and shield point are dif-
ferent from those of other 2 types of agents, does not
negatively affect the double QMIX method based on
the similar test winning rate trajectories in 3s5z and
1c3s5z settings.

6 CONCLUSION AND FUTURE
WORKS

In this work, we formally prove that overestimations
exist in multi-agent value mixing Q-learning under
certain conditions. We show that the idea presented
in double DQN can be generalized to multi-agent
settings. We present the adapted method, double
QMIX, and illustrate its performance gains against
other value mixing methods in StarCraft II micro-
management tasks. In future, we hope to extend the
expressiveness of the mixing network and keep the
stability of action value estimation to model a richer
class of joint action functions and to improve the per-
formance to an even higher level.
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Lever, G., Castañeda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., Sonnerat, N.,
Green, T., Deason, L., Leibo, J. Z., Silver, D., Has-
sabis, D., Kavukcuoglu, K., and Graepel, T. (2019).
Human-level performance in 3d multiplayer games
with population-based reinforcement learning. Sci-
ence, 364(6443):859–865.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of artifi-
cial intelligence research, 4:237–285.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algo-
rithms. In Advances in neural information processing
systems, pages 1008–1014.

Kraemer, L. and Banerjee, B. (2016). Multi-agent reinforce-
ment learning as a rehearsal for decentralized plan-
ning. Neurocomputing, 190:82–94.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-
to-end training of deep visuomotor policies. The Jour-
nal of Machine Learning Research, 17(1):1334–1373.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Ju-
rafsky, D. (2016). Deep reinforcement learning for di-
alogue generation. arXiv preprint arXiv:1606.01541.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Ma-
chine learning, 8(3-4):293–321.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems,
pages 6379–6390.
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