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Abstract—As a prominent early instance of the Internet of
Things in the smart grid, the advanced metering infrastruc-
ture (AMI) provides real-time information from smart meters to
both grid operators and customers, exploiting the full potential
of demand response. However, the newly collected information
without security protection can be maliciously altered and result
in huge loss. In this paper, we propose an energy theft detec-
tion scheme with energy privacy preservation in the smart
grid. Especially, we use combined convolutional neural networks
(CNNs) to detect abnormal behavior of the metering data from a
long-period pattern observation. In addition, we employ Paillier
algorithm to protect the energy privacy. In other words, the users’
energy data are securely protected in the transmission and the
data disclosure is minimized. Our security analysis demonstrates
that in our scheme data privacy and authentication are both
achieved. Experimental results illustrate that our modified CNN
model can effectively detect abnormal behaviors at an accuracy
up to 92.67%.

Index Terms—Convolutional neural network (CNN), energy
theft, privacy preserving, smart grid.

I. INTRODUCTION

THE INTERNET of Things (IoT) and artificial intelli-
gence (AI) are two cornerstone technologies enabling

smart cities, and have been interacting with each other into
an organic ecosystem. In the smart grid, smart meters and
various sensors are widely used to increase the two-way com-
munication capability. Combined with the advanced meter-
ing infrastructure (AMI), they enable energy companies to
obtain real-time voltage, current, active power, reactive power,
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energy usage, and other measurements from the smart meters
deployed at user homes [1], [2]. Recently, smart meters are
shown to be vulnerable to cyber physical attacks in the smart
grid due to their insecure and distributed network and physical
environment [3]–[5]. One serious threat is energy theft attacks,
which cost more than $25 billion every year to the energy
companies [6]. Such an attack aims to pay less by attacking
user meters to tamper with the energy usage sent to energy
company. Another severe threat is privacy violation. As smart
meters collect real-time energy usage that may reveal user’s
habits and behavior at home, the user privacy concern will be
raised if the collected data is not well protected [7]. For exam-
ple, if the user’s daily energy consumption is low, it may imply
that the user is not at home [8]. Thus, such privacy-sensitive
information must be protected from unauthorized access. To
disclose the usage for theft detection and to hide the usage for
privacy preservation are conflicting goals. We aim to address
both theft detection and privacy preservation in this paper.

A number of works have been conducted for energy theft
detection in the smart grid. Some used the classification-
based support vector machine (SVM) technique to clas-
sify the normal and attack samples from the energy usage
database [9]–[11]. In addition, matrix decomposition [12], lin-
ear regression [13], and state estimation [14] can be used to
analyze the data for energy theft detection. However, these
approaches cannot be applied to cases with massive amounts
of data. Zheng et al. [15] proposed a wide and deep convolu-
tional neural network model to analyze energy theft behavior
of individual users. In this paper, we additionally study the
energy theft behavior from a user group perspective, i.e., a
group of users may exhibit similar energy consumption pat-
terns due to local activities for a certain period of time. We
plan to exploit this behavior characteristic to more accurately
detect the sophisticated attacker.

Most theft detection schemes require the access of the orig-
inal smart meter data that are highly user privacy-sensitive.
Although privacy-preserving techniques have been introduced
in the smart grid communication [16]–[18], they are rarely
proposed in the context of theft detection. One work is
developed under an assumption that the normal energy output
of a photovoltaic device is similar to that from a geographi-
cal region [19]. With the homomorphic encryption technique,
the calculation of the distance of two vectors is conducted
while the vectors (energy data) are not disclosed to unau-
thorized entities. However, the proposed work detects energy
theft from the perspective of generators, it cannot solve the
diversity of theft. For example, if a user’s meter is tampered
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with usage by external illegal attack, it cannot be detect. In
addition, Salinas and Li [20] proposed a privacy-preserving
state estimation scheme based on two loosely coupled filters
to detect energy theft attacks and achieve privacy preservation.
But it is not conformed the actual grid operation, because it
protects privacy by sending residual rather than user usage, so
the smart grid cannot be dispatched and paid for bills.

In this paper, we propose an energy theft detection scheme
with energy privacy preservation in the smart grid to ensure
user privacy and realize the detection of theft. Specifically, we
employ the combined convolutional neural networks (CNNs)
for analyzing the reported usage data and detecting the fake
data. To our best of knowledge, only [15] and ours use CNN
to detect theft. Utilizing the homomorphic encryption tech-
nique, we can protect the energy usage in the transmission
and further enable the gateway (GW) to aggregate the authen-
tic user energy usage without accessing any original usage
data. In addition, the control center (CC) can only access the
sum of the authentic usage data and the number of users who
honestly report their usage data. The CC is unable to access
the original energy usage data of individual users, which are
highly privacy-sensitive. The main contributions of this paper
are threefold.

1) We build a CNNs model for detecting the abnormal theft
behavior based on the similarity of the users energy con-
suming behavior in a local user group. The use of the
user group data helps overcome the data incomplete-
ness problem, address more sophisticated theft detec-
tion problem, and eventually increases the detection
accuracy.

2) We realize the dispatching of smart grid under the
premise of protecting users’ privacy, where we uti-
lize the homomorphic encryption to achieve privacy-
preserving data aggregation and efficient smart grid
communications.

3) We provide a comprehensive security analysis to show
that the proposed scheme achieves the desired security
property. In addition, we conduct extensive experiments
on massive realistic energy usage dataset. The experi-
mental results show that our proposed combined CNN
model outperforms other existing approaches in terms
of accuracy.

The remainder of this paper is organized as follows. After
related work in Section II, we introduce system model, system
design goal, and system security requirements in Section III.
In Section IV, we review the relevant knowledge. Section V
presents our proposed scheme. We give security analysis in
Section VI, while Section VII gives the experimental results.
Finally, we conclude this paper.

II. RELATED WORK

This section discusses related work in two categories:
1) energy theft detection and 2) privacy preserving with data
aggregation.

A. Energy Theft Detection

Some works have been conducted to investigate the energy
theft problem in the smart grid, where existing technique

can be generally classified into three categories: 1) state
estimation; 2) game theory; and 3) machine learning. The
classic state estimation-based solutions [14], [21]–[23] usu-
ally introduced some integrated distribution state estimation
tricks to realize; while the game theory-based method is
considered to be a new way to detect energy theft in energy-
theft issues [24], [25]. Previous works have investigated the
prevention and detection of attacks by using classification-
based detection technique, such as SVM. Pereira et al. [26]
introduced an algorithm called social-spider optimization for
feature selection purposes. Feature selection, tuning param-
eters and feature selection+tuning parameters, are chosen as
model selection. However, most of these studies are less accu-
rate in energy theft detection and require artificial feature
extraction according to domain knowledge.

B. Privacy Preserving With Data Aggregation

Recently, a number of works focused on data aggrega-
tion to preserve the privacy of users information in the smart
grid [27], [28]. It is assumed that the aggregate usage data
provides enough information to the entity without exposing
the individual user’s information privacy, that is, the entity
can only know the whole data rather than the personal data.
Bao and Lu [29] proposed a differentially private data aggre-
gation scheme for aggregating smart meter measurements. In
specific, every smart meter reports an encrypted data onto
the GW, then, the GW aggregates all the reported data and
sends the aggregated value to the CC. The CC decrypts the
aggregated value to get the summation of all smart meter
readings.

Different from previously privacy-preserving theft detection
schemes, the set aggregation in the smart grid communications
of our proposed scheme enables the CC to obtain not only the
whole aggregated energy usage but also the number of users
who honestly report their usage data. With this kind of set
aggregation, the control server can carry out more accurate
data analysis for monitoring and controlling the smart grid.

III. SYSTEM MODEL, SYSTEM DESIGN GOAL, AND

SYSTEM SECURITY REQUIREMENTS

In this section, we formalize the system model, system
design goal, and system security requirements.

A. System Model

In this section, we discuss how users send the energy usage
information to the CC/GW and a perpetrator of theft detec-
tion. As shown in Fig. 1, it includes users, local area network
(LAN), CC, and trusted third party (TTP).

1) Users: Each user is equipped with a smart meter that
connects the smart devices at home to aggregate their
energy consumption [16]. Then the smart meter sends
the usage to the energy utility via the GW for data
analysis, charging, and reasonable energy dispatching.

2) LAN: It is a collection of users in a certain area. The
LAN is a server with memory cells, processing units,
and GWs [30]. Its GW serves as a relay and aggregator
role in the system. The server GW (SG) is a detection
server with processing units, which used to energy theft
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Fig. 1. System model.

detection (we think it is trusted). The LAN connects
involved users and the CC in the smart grid.

3) CC: The CC is the core entity in the energy com-
pany, who is responsible for processing and analyzing
the information from users. It considers the LAN as a
unit and does not know the details of each user under
the LAN.

4) TTP: The TTP is a key generation party, which issues
keys to other entities; it also issues a unique ID for each
user, GW and SG and these IDs are stored in a secure
place. Assume that TTP is trusted by all entities and
would not be compromised.

We believe that smart grid contains local area networks
LANs = {LAN1,LAN2, . . . ,LANm}. These LANs engage in
two-way communications with the smart meter network, per-
form aggregation, and authentication operations to ensure data
authenticity and integrity [31]. Simultaneously, each LAN con-
tains users Us = {U1,U2, . . . ,Ui, . . . ,Uw}, where assuming w
is most 100 to alleviate the load on the LAN server. This paper
leverages the measurements and communication capabilities of
smart meters to detect energy thieves in a privacy-preserving
manner.

B. System Design Goal

Energy theft is a criminal behavior in the smart grid that
manipulates the output of a smart meter. If an illegal user is
able to operate a meter, he can attack the meter and tamper
with the amount of energy sent to the LAN. The purpose of the
dishonest user is to reduce his own energy bills by reducing
the energy usage. In this case, the illegal user may tamper all
or some of the functionalities of the home-level meter, which
is easy to launch and difficult to detect. Hence, the system
we proposed aims to detect energy theft through users’ energy
usage pattern at user sides, that is, the behavior of stealing
energy should be successfully and effectively detected, while
still be expected to be realized in a privacy-preserving manner.

C. System Security Requirements

In our system under consideration, the CC and GW are
honest but curious, that is, they do not change users’ energy
usage during communication, but they are curious about
the specific electrical information of each user. However,
the adversary in the region is malicious, namely, actively
eavesdrop on communication between different departments,

modify communication information, or launch replay attacks.
Therefore, our security requirements are as follows.

1) Data Privacy: Users’ private information is not revealed
to the adversary; CC should knows nothing about the
details of individual user’s usage.

2) Data Information Confidentiality: The user’s energy
usage and bills should be protected against any adver-
sary. Even if an adversary eavesdrops on data transmis-
sion links, no useful information can be extracted from
them. Additionally, if the adversary steals the data from
LANs’ and/or CC’s databases, it cannot identify each
users data, either.

3) Data Integrity and Authentication: If an adversary tries
to resend or modify data, these malicious behaviors
should be detected to ensure the integrity of data. In
addition, the data should ensure that any unauthorized
access or modification is detected, which means that
adversaries cannot invade or falsify data within the LAN.
Meanwhile, only the correct reports can be received.

IV. BACKGROUND KNOWLEDGE

This section reviews the convolution neural network tech-
nology that used to detect abnormal behavior of the metering
data and the Paillier homomorphic algorithm that used to
protect data privacy.

A. Convolution Neural Network

In the research of image recognition, including the compe-
tition of authoritative ImageNet, the top algorithms in the list
are all from CNN, such as VGG, ResNet, etc. In particular,
CNN algorithm plays an important role in data processing in
matrix form.

1) Structure of CNN: A CNN architecture is established
by a stack of distinct layers that transform the input volume
into an output volume (e.g., holding the class scores) through a
differentiable function. Fig. 2 shows that a CNN consists of an
input, an output layer, and multiple hidden layers [32], where
the hidden layers are composed up of convolutional layers,
pooling layers, fully connected layers, and so on.

The convolutional layer consists of a set of learnable fil-
ters or kernels, which have a small receptive field but extend
through the full depth of the input volume. During the forward
pass, each filter is convolved across the width and height of the
input volume, computing the dot product between the entries
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Fig. 2. CNN architecture.

of the filter and the input and producing a 2-D activation map
of that filter. The pooling layer is a form of nonlinear down-
sampling and serves to progressively reduce the spatial size of
the representation, to reduce the number of parameters and the
amount of computation in the network, and hence to control
overfitting. After several convolutional and max pooling lay-
ers, the high-level reasoning in the neural network is done via
fully connection layers. Neurons in a fully connection layer
have connections to all activations in the previous layer. The
fully connection layer is used to generate the final output.

2) Activation Function: In artificial neural networks, the
activation function of a node defines the output of that node
given an input or set of inputs, the nonlinear activation func-
tions allow networks to compute nontrivial problems using
only a small number of nodes. Rectified linear unit (Relu)
is a common activation function [33], we use it in our neu-
ral network framework. The equation of Relu performs as
follows [34]:

f (x) =
{

0, x < 0
x, x ≥ 0.

For the classified problem, the softmax function is a com-
mon one added to output layer to get category, which squashes
a K-dimensional vector of arbitrary real values to a K-
dimensional vector of real values where each entry is in the
range (0, 1], and all the entries add up to 1

σ(z)j = ezj∑K
k=1 ezk

, for j = 1, . . . ,K.

3) Loss Function and Optimizer: To train the neural
network, we define loss function and optimizer to adjust the
weights. We use categorical cross-entropy as loss function and
stochastic gradient descent (SGD) as optimizer in our neural
network framework.

The cross entropy for the distributions u and v over a given
discrete set is defined as

H(u, v) = −
∑

x

u(x) log v(x).

SGD is an iterative method for optimizing a differentiable
objective function, a stochastic approximation of gradient
descent optimization [35]. The basic idea is to get “gradient”
through a randomly selected data (xi, yi), so as to update the
weight W via Wt+1 ← Wt + ηθ(−yiWT

t xi)(yixi).

B. Paillier Homomorphic Algorithm

The Paillier cryptosystem can achieve the homomor-
phic properties, which is widely desirable in many privacy

preserving applications [8], which consists of five main
parts [36].

1) Generation of Homomorphic Key: Select a security
parameter κ and two large primes p and q, where |p| = |q| =
κ . Compute the parameters n = pq and λ = lcm(p− 1, q− 1)
and select the element g ∈ Z∗

n2 ; set public key as (n, g) and
private key as λ. Define the function

L(φ) = (φ − 1)/n.

2) Encryption: Select a random number ri ∈ Z∗
n2 , the

encryption operation for plaintext ci = E(mi) = gmi rn
i where

ci is the ciphertext of the plaintext mi.
3) Decryption: Decrypt the ciphertext ci into a plaintext mi

mi=D(ci) = L
(
cλi mod n2

)
L
(
gλ mod n2

) mod n.

4) Aggregation: Aggregate multiple ciphertext ci =
E(mi) = gmi rn

i , which 1 ≤ i ≤ w, as follows:

c =
w∏

i=1
ci mod n2 = =

w∏
i=1

gm1+m2+···+mn rn
i mod n2.

5) Decrypt the Aggregated Ciphertext: Decrypt the aggre-
gated ciphertext as

m = L
(
cλ mod n2

)
L
(
gλ mod n2

) mod n

among them, m = m1 + m2 + · · · + mw.

V. PROPOSED SCHEME

In this section, we introduce our energy theft detection
scheme with energy privacy preservation in the smart grid.
To describe this scheme, we divide the process into two parts,
namely, energy privacy preservation and energy theft detection
with proposed combined CNN.

PART 0: FEASIBILITY ANALYSIS AND PREPARATION

This part analyzes the feasibility of theft detection with the
combined CNN model.

A. Data Attributes

Two important attributes of electricity consumption behav-
ior of users are considered: one is periodicity, that is users
usually consume energy cyclically (daily or weekly) [15]; the
other one is group similarity, that is users always follow some
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similarly patterns with others that are in a same group. For
instance, the users who come from one community share sim-
ilar energy consumption environments and may also produce
same behaviors that may cause big valid changes on energy
usage side.

B. Modeling

According to the periodicity, the obtained sequence data can
be converted into the matrix form. For example, a 28 days of
energy usage data can be formalized into a matrix with the
shape of 4 × 7 by weekly cycle. To use group similarity, we
select some reference users who come from the same group
to the auxiliary input of the model as the detected target user.
Therefore, the CNN model consist of two inputs: 1) target user
data and 2) reference users data.

C. Training Model

A major difficulty in detecting is to obtain abnormal meter
data, as is hard to manually label the data, we use the labeled
database from State Grid Corporation of China (SGCC) [37]
which contains the energy usage data of 42 372 customers
within 1035 days. Additionally, we insert a zero value to pad
of each user’s energy usage sequence to make each user’s data
length up to 1036, then convert each data into a matrix whose
shape is (148 × 7), which aims to enables the length of input
data to meet the integer multiple of the cycle in CNN.

PART 1: ENERGY PRIVACY PRESERVATION

In this part, we show how to use the Paillier homomor-
phic encryption to protect the privacy of the energy usage
data along with state information.

A. System Initialization

The system initialization inputs a security parame-
ter (1λ) and generates the public parameter pp =
(q,P,G1,G2,GT , g1, g2, ϕ,H	(·), e), where G1 and G2 are
two cyclic groups of the same prime order q, P ∈ G is a gen-
erator, GT is a multiplicative cyclic group, g1 and g2 are the
generators of G1 and G2, respectively, and ϕ(g2) = g1, ϕ is an
isomorphic mapping, e : G1×G2 → GT is a bilinear mapping
and H	(·) is an hash function with a key.

The TTP selects a system master key s ∈ Z∗p and computes
the system public key y = gs

2, also randomly chooses δ, x ∈ Z∗q
and computes e(P,P)δ,Y = xP and selects two hash functions:
H1(·) : {0, 1}∗ → G1 and H2(·) : {0, 1}∗ → G2.

Receiving pp and a security parameter κ chosen by TTP,
the CC also initializes the Paillier encryption algorithm by
selecting two large prime numbers p and q with regard to κ
satisfying |p| = |q| = κ , computing two parameters n = pq
and λ = lcm(p − 1, q − 1). Select g ∈ Z∗

n2 as the generator
and set the public key is (n, g) and private key is (λ) in the
Paillier encryption algorithm.

B. System Registration

When to register the system, a GW of the LAN first chooses
a random number xg ∈ Z∗q as the private key, and computes

the corresponding public key Yg = xgP; a SG chooses a ran-
dom number xs ∈ Z∗q as the private key, and computes the
corresponding public key Ys = xsP; a user i ∈ U of the LAN
chooses a random number xi ∈ Z∗q as the private key, and
computes the corresponding public key Yi = xiP.

C. Energy Usage Transmission

As the CC needs to proceed managements and control deci-
sion toward the grid power system, in such a case that, each
user should send its real-time data to the CC.

Concretely, the user i encrypts its data mi by Paillier homo-
morphic encryption by choosing a random number ri ∈ Z∗

n2

and computing a ciphertext

ci = E(mi) = gmi rn
i mod n2.

Then, the user i uses the private key xi to generate a
signature σi on a ci as [38]

σi = xiH(ci‖LAN‖Ui‖TS)

where TS is the current timestamp (used to resist potential
replay attack). Finally, the user sends the encrypted usage data
ci‖LAN‖Ui‖TS‖σi to both the GW and the SG.

D. Recovery of the Encrypted Energy Usage

The SG verifies the validity of e(P, σi) =
e(Yi,H(ci‖LAN‖Ui‖TS)) and recover the corresponding
usage data mi=D(ci) from the ciphertext ci.

E. Transmission of Theft Result

The theft detection state is expressed as 1 or 0, where the
abnormal data is labeled as 1, and vice the normal data is
represented as 0. The SG picks ri ∈ Z∗

n2 and encrypts the
detection result ti into a ciphertext

ai = E(ti) = gti rn
i mod n2

where ti is 1 or 0. It uses the private key xs under
the current timestamp TS to generate a signature βi =
xsH(ai‖LAN‖SG‖TS), in order to resist potential replay
attack. Finally, the SG sends the encrypted detection result
ai‖LAN‖SG‖TS‖βi to the GW.

F. Aggregation

Receiving the total ω encrypted energy usage data
ci‖LAN‖Ui‖TS‖σi, for i = 1, 2, . . . , ω, the local GW first
checks the time stamp TS and the signature σi to ver-
ify its validity by e(P, σi) = e(Yi,H(ci‖LAN‖Ui‖TS)). In
order to efficiently proceed the verification, the GW performs
verification in a batch way as

e

(
P,

ω∑
i=1

σi

)
=

ω∏
i=1

e(P, xiH(ci‖LAN‖Ui‖TS))

=
ω∏

i=1

e(Yi,H(ci‖LAN‖Ui‖TS)).

Similarly, the GW verifies the validity of the SG. Then
it performs the following steps for privacy-preserving report
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aggregation. First, the GW aggregates the encrypted usage data
c1, c2, . . . , cω into c as

c =
ω∏

i=1

ci mod n2 = gm1+m2+···+mw

(
w∏

i=1

rn
i

)
mod n2.

Similarly, the GW aggregates the encrypted detection results
a1, a2, . . . , aω into a as

a =
ω∏

i=1

ai mod n2 = ga1+a2+···+aw

(
w∏

i=1

rn
i

)
mod n2.

Then, the GW uses its private key xg to produce a signature
σg = xgH(c‖a‖LAN‖GW‖TS), where TS is the current time
stamp. Finally, the GW publishes the aggregated encryption
data c‖a‖LAN‖GW‖TS‖σg to the CC.

G. Decryption the Aggregated Ciphertext

Upon c‖a‖LAN‖GW‖TS‖σg, the CC checks e(P, σg) =
e(Yg,H(c‖a‖LAN‖GW‖TS)), and decrypts the aggregated
data c and a as

m = L
(
cλ mod n2

)
L
(
gλ mod n2

) mod n

dt = L
(
aλ mod n2

)
L
(
gλ mod n2

) mod n

where m = m1 + m2 + · · · + mw and t = t1 + t2 + · · · + tw.
So far, the CC gets the knowledge of sum of energy usage

and the number of normal meters and abnormal meters in an
area without knowing each user’s energy usage and the number
of normal meters, in order to give an accurate decision for the
grid.

PART 2: THEFT DETECTION WITH OUR

PROPOSED COMBINED CNN

In this part, we show how to use our combined CNN model
to analyze the decrypted data of smart meters and send the
detection results in a ciphertext version.

A. Data Preprocessing

The energy usage data consists of missing or erroneous val-
ues. We exploit the forward interpolation method to recover
the missing values as

f (xi) =
⎧⎨
⎩

0, xi ∈ NaN, i = 1
xi−1, xi ∈ NaN, i > 1
xi, xi /∈ NaN

where xi represents the value in the energy usage data over a
period (e.g., a day). If xi is a null or a non-numeric character,
we set it as a member of NaN (NaN is a set). We obtain energy
data from m users for n units of time. Assume that the length
of time period is c units, we have the sample data set n = k∗c
based on its k time cycles, including a reference group users’
data.

We could get m single samples in total and each sample s
is a vector whose length is k ∗ c+ 1, where the last value of
the vector is y which is a single value (1 or 0). Assuming the
size of each group is g, some samples can be combined to

Fig. 3. Split data set.

reference groups. We construct a k ∗ c matrix S from previous
values of each sample s.

For the common CNN input, its shape should be
(height, width, channel), which means the height, width, and
color channel of an image. To format our data, the height
should be the number of cycle (k), the width should be the
length of cycle (c), and we can use the channel dimension
to present the number of different users. For a single target
user, the channel should be 1. For the reference group users,
the channel should be g. So we can get an image-like data
structure for a single user, namely,

⎛
⎜⎝
[
S1,1

]
. . .

[
S1,c

]
...

. . .
...[

Sk,1
] · · · [

Sk,c
]

⎞
⎟⎠

the shape is (k, c, 1). And we can get an image-like data
structure for group users, the shape is (k, c, g).

For the output data, our purpose is to detect the label value
of current data, it should be a single dimensional vector as
[sk∗c+1], the shape is (1). For the models we want to train,
each of them have two data set, one is the training data set, the
other is the validation data set. In order to split them out, we
apply the shuffle algorithm in our data set first, then slice the
data set to get training and validation data. So the samples are
randomly selected as training or validation, as shown in Fig. 3.

B. Our Combined CNN Model

We use 2-D convolution layers and full connection layers
to build our proposed combined CNN framework, and use the
merge layer to merge two input threads as shown in Fig. 4,
which includes three stages and a combine.

1) Individual Features Extracting Stage: For the input
layer, we have two input threads, one for the target user,
and one for the reference users. The shape of target input
data should be (j, c, 1) since the target is a single user,
while the shape of reference input data should be (j, c, g)
since there are g users as reference. We use a dedicated
convolution layer for the two input threads, they both
have α convolution filters; after the double parallel con-
volution layers, the shape of two sets of data will all be
(j, c, α).

2) Combine: We use multiple parallel convolution layers to
extract features from the two input data independently.
Then, we use merge layer to combine the features from
the target data and reference data. Assume that after β
parallel layers, the two sets of data are all in the form
of (j, c, α), it turns into (j, c, 2α) after the merge layer.
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Fig. 4. Our proposed combined CNN model framework.

3) Combined Features Extracting Stage: We stack convo-
lution and pooling layers just as common CNN models.
To extract more features and reduce computation, we
stack the convolution layer and the pooling layer alter-
nately, one convolution layer and one pooling layer each
time, while the convolution layer doubles the number of
features and the pooling layer changes the shape. For
example, assume the current shape is (j, c, γ ), after pool-
ing layer, it become (j/2, c − 1, γ ); after convolution
layer, it become (j/2, c− 1, 2γ ).

4) Combined Features Reducing Stage: After several con-
volution and pooling layers, we flatten the shape to one
dimension so we can stack some full connection lay-
ers. The shape of the layer just flattened will be very
large, we add a full connection layer whose length is ϕ
to change the shape to (ϕ), and stack smaller full con-
nection layers in the following. Finally, we employ a
full connecting layer with softmax as the output layer
to classify the target. Since we only have two categories,
theft or not, so the final output shape is (2). One is the
probability of theft, the other is the probability of nor-
mal, and the sum of the two is 1. If the probability of
theft is greater than normal, we think the metering data
is abnormal, and vice versa.

The above variables are adjustable, which gives more space
to optimize the expressiveness and efficiency for our combined
CNN model. Fig. 4 shows an example parameter set, which j
equals 128, c equals 7, g equals 10, α equals 8, and ρ equals
128. To simplify the example model, we add one parallel con-
volution layer in the individual features extracting stage, three
pooling layers and two convolution layers in the combined
features extracting stage, and three full connection layers in
the combined features reducing stage.

VI. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
scheme. According to the security requirements proposed in
Section III-C, we discuss whether the proposed scheme meets
the requirements.

1) Fine-Grained Data Privacy Preservation: In the scheme,
the energy usage mi and detection result ti are encrypted,
while the LAN aggregates users’ information into c and
t and then sends them to the CC. For another side,

the usage data sent to the CC is an aggregated set that
include a number of users, in such a case that, the CC
cannot reveal the energy usage of each individual user.
In addition, the CC can access the number of user who
honestly reports its usage data rather than the state of
each individual user.

2) Data Confidentiality: The user sends the energy usage
ci‖LAN‖Ui‖TS‖σi and the SG sends the encrypted
detection result ai‖LAN‖SG‖TS‖βi to the LAN. Here,
other users including the LAN know nothing about
the actual energy usage plaintext and detection result.
The data of smart meters are sent to LAN after being
encrypted by the Paillier algorithm, and then transmitted
to CC by encrypted aggregated data under homomor-
phism. In this process, the users data have been trans-
mitted in ciphertext formats, the attacker cannot get any
information about the data.

3) Data Authentication and Data Integrity: In our scheme,
each user’s data and the aggregated data are signed by
a short signature combined with a timestamp, in such a
way that, the validation and the integrity of the data
can be nicely guaranteed. If any adversary attempts
to modify the stored data, the LAN GW or CC can
detect it.

VII. EXPERIMENTAL RESULTS

In order to evaluate the proposed energy theft detection
scheme with energy privacy preservation, we conduct the sim-
ulations on a 64 bit computer with dual Intel Core i5-2410M
2.30-GHz CPU and 4-GB RAM, using Python, Numpy,
Pandas, TensorFlow, and Keras. The energy usage data comes
from SGCC [37].

A. Experimental Data

We get the data from 42 372 users during two and a half
years, where each value means energy usage of each day
and the data has similarity per cycle whose length is seven
days [15]. Therefore, we set c to be 7 and k to be 148, which
is used to detect theft based on history data. By randomly
selecting 80% of samples from the total 44 218 samples, we
compose the training data set while the remaining 20% of
samples to compose the validation data set. Moreover, we use
Keras as the implementation tool to build and train our model.



7666 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 5. Model configurations.

Accuracy Score: To train our model, we use the categorical
cross-entropy as the loss function. To evaluate the performance
of models, we use accuracy score as performance score. The y
means the predicted value and ŷ means the true value. yi is the
predicted value of the ith sample and ŷi is the corresponding
true value. The following models share this accuracy score as:

accuracy
(
y, ŷ
) = 1

nsamples

nsamples∑
i=1

δ
(
ŷi, yi

)

where

δ
(
ŷi, yi

) =
{

1, ŷi = yi
0, else.

B. Model Comparison

We derive the described CNN framework to build the
proposed combined CNN model shown in Fig. 4. As com-
parison, we employ a single CNN model and a simple
deep neural network (DNN) model. Our proposed com-
bined CNN model includes two input layers, four convolu-
tion layers, three pooling layers, and three full connection
layers. The single CNN model include three convolution
layers, three pooling layers, and three full connection lay-
ers. Simple DNN model only include three full connection
layers.

The models configurations, evaluated in this paper, are out-
lined in Fig. 5, one per column. The shape of target input
data of our proposed combined CNN model is (148, 7, 1).
Reference input data’s shape is (148, 7, 10). Through Conv2d
layer 1-1, the shape of the target thread data become
(148, 7, 8). Followed by Conv2d layer 1-2, the shape of the
reference thread data become (148, 7, 8). Merge layer com-
bines the target data and the reference data to one. After this
layer, the shape of the data turns to be (148, 7, 16). Pooling
layer uses maxpooling, the shape of the data turns to be
(37, 6, 16). Similarly, the corresponding shapes are formed
through these layers in sequence in each model.

As shown in Table I, we set random values as the origin
weights, 128 as the batch size. After that, we compile the
model with SGD optimizer and the loss function. To evaluate
the performance of models, we consider the accuracy score as
the metric function.

TABLE I
MODEL CONFIGURATIONS

After model compiling, we train the model using input data
in a batch way and evaluate the performance metric value
in each epoch, where an epoch means that all samples are
selected once at the training data set. The training results are
shown in Fig. 6, where the horizontal axis indicates the number
of epochs of training and the vertical axis indicates the aver-
age loss and accuracy score value. We observe that the average
loss of our proposed combined CNN model becomes smaller
and smaller as the training goes, and it achieves a higher
accuracy score than the single CNN model after 100 epochs
training. The training result of the simple DNN model achieves
a lower accuracy score than CNN models after 100 epochs
training.

C. Method Comparison

To evaluate the performance of our combined CNN model,
we present the experimental results over the given dataset to
have a performance comparison with other traditional machine
learning methods. Concretely, linear SVC [39] is an implemen-
tation of support vector classification for the linear kernel case;
random forest [40] is an averaging algorithm based on ran-
domized decision trees; logistic regression [41] uses a logistic
function to describe the possible outcomes of a single trial are
modeled. Table II gives the arguments used for the baseline
methods to train these models. Using the same training data
set and validation data set, we see that our proposed combined
CNN model gets the highest accuracy score of 0.9267 from
Table II.

D. Parameter Study

There are various configurable parameters of model which
cannot optimize by training but can affect the performance
of model, such as batch size, learning rate of optimizer, and
dropout rate. Batch size χ means how many samples will be
used to evaluate loss and do optimize each times; learning rate
ε defines how many loss gradient will be used to optimize the
model and determines how fast the optimization is; dropout
rate τ defines how much the ratio of signals between layers
will be random ignored; to avoid overfitting, dropout layers
are imported to the model. Hence, we give a deep analysis
on the impacts of these parameters on the performance of our
proposed combined CNN model. In Fig. 6, the parameter of
the proposed combined CNN model is χ = 32, ε = 0.1, and
τ = 0.2. The training results of models for parameter study
as follows.

1) Effect of Batch Size χ : Fig. 7 shows the performance
of our combined model (1) with setting the batch size as 128
which achieves a high max accuracy with 0.9268, while needs
more epochs to optimize. We can see that a smaller batch
size can speed up the optimizing within same epochs, which
suggests that setting the bath size between 32 an 128 is more
acceptable.
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Fig. 6. Model comparison.

Fig. 7. Parameter study of χ .

Fig. 8. Parameter study of ε.

TABLE II
ALGORITHM ACCURACY SCORES

2) Effect of Learning Rate ε: Fig. 8 shows the performance
of our combined model (2) with the learning rate is 0.3 which
achieves a lower accuracy of 0.9241 and reaches its max accu-
racy faster. While the learning rate in comparing combined
model (3) is 0.03 shown in Fig. 8, this model achieves a high
accuracy of 0.9263 and achieves its max accuracy later. We
can see that the learning rate affects the speed of optimizing,
and in our model setting learning rate not bigger than 0.1 is
more acceptable.

3) Effect of Dropout Rate τ : The dropout rate in the com-
bined model (4) is 0.1 shown in Fig. 9, which achieves
a high accuracy of 0.9267 but not always steady. And the
performance gap between the validation set and the training
set is very big, while the max accuracy in the training set is
0.9607. We can see that the dropout rate reduces overfitting;
and in our model importing dropout and setting its rate bigger
than 0.1 is more acceptable.

E. Comparison With Existing Schemes

This section elaborates the comparison of the proposed
scheme with the existing schemes. The comparison results
reveal that user energy usage in Zheng et al.’s [15] and
Jindal et al.’s [10] scheme may be leaked and users’ privacy
cannot be guaranteed. Salinas and Li’s scheme [20] cannot
realize the dispatch in the smart grid because the CC cannot
know the total energy usage in the area by sending residual
to the operator. Furthermore, Salinas’s scheme and Jindal’s
scheme are unable to detect theft for massive data. Thus, as
shown in Table III, we can see that the proposed scheme can
achieve user privacy and the dispatching of the smart grid, and
detect energy theft for massive data.

F. Proposed Combined CNN Model Versus [15]

As the only two schemes that used the neural network to
detect energy theft, we make a comparison. We build the
model which consists of the wide component and the deep
CNN component from [15], and set paraments in the model
as ω = 90, ψ = 60, ξ = 90, and ζ = 3 (ω,ψ, ξ : a
parameter controlling the number of neurons, ζ : the num-
ber of convolution layers) to compare with our proposed
combined CNN model shown in Fig. 4 under the same
data set.

As shown in Fig. 10, using our proposed combined CNN
model, the loss decrease faster and accuracy increase faster at
training and validation set; the performance of our proposed



7668 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 9. Parameter study of τ .

TABLE III
PROPERTIES COMPARISON

Fig. 10. Our proposed combined CNN model versus [15].

combined CNN model improves more stable along with train-
ing; finally, the max accuracy we achieved is 0.9267, is larger
than 0.9254 which [15] achieved. This improvement may owe
to using two input threads from a user group perspective to
study the energy theft behavior.

VIII. CONCLUSION

In this paper, we have proposed an energy theft detection
scheme with energy privacy preservation in the smart grid.
The energy theft detection based on our proposed combined
CNN model is used to detect whether the metering data has
an abnormal behavior. Moreover, the usage data of users and
the number of users who honestly report their usage data are
protected by the Paillier homomorphic algorithm. In addition,
the security analysis shows that our scheme achieves confiden-
tiality and integrity, as well as data privacy. The experimental
results show that the accuracy of anomaly detection is more
better than others. For our future work, we intend to improve
our scheme with less communication and computing overhead.
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